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A current challenge is to develop computational approaches to infer gene network regulatory relationships based on
multiple types of large-scale functional genomic data. We find that single-layer feed-forward artificial neural network
(ANN) models can effectively discover gene network structure by integrating global in vivo protein:DNA interaction
data (ChIP/Array) with genome-wide microarray RNA data. We test this on the yeast cell cycle transcription network,
which is composed of several hundred genes with phase-specific RNA outputs. These ANNs were robust to noise in data
and to a variety of perturbations. They reliably identified and ranked 10 of 12 known major cell cycle factors at the top
of a set of 204, based on a sum-of-squared weights metric. Comparative analysis of motif occurrences among multiple
yeast species independently confirmed relationships inferred from ANN weights analysis. ANN models can capitalize
on properties of biological gene networks that other kinds of models do not. ANNs naturally take advantage of
patterns of absence, as well as presence, of factor binding associated with specific expression output; they are easily
subjected to in silico ‘‘mutation’’ to uncover biological redundancies; and they can use the full range of factor binding
values. A prominent feature of cell cycle ANNs suggested an analogous property might exist in the biological network.
This postulated that ‘‘network-local discrimination’’ occurs when regulatory connections (here between MBF and target
genes) are explicitly disfavored in one network module (G2), relative to others and to the class of genes outside the
mitotic network. If correct, this predicts that MBF motifs will be significantly depleted from the discriminated class and
that the discrimination will persist through evolution. Analysis of distantly related Schizosaccharomyces pombe
confirmed this, suggesting that network-local discrimination is real and complements well-known enrichment of MBF
sites in G1 class genes.
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Introduction

Hundreds of yeast RNAs are expressed in a cell cycle–
dependent, oscillating manner. In both budding yeast and
fission yeast, these RNAs cluster into four or five groups, each
corresponding roughly to a phase of the cycle [1–9]. Large
sets of phase-specific RNAs are also seen in animal and plant
cells [10–12], arguing that an extensive cycling transcription
network is a fundamental property of Eukaryotes. The
complete composition and connectivity of the cell cycle
transcription network is not yet known for any eukaryote,
and many components may vary over long evolutionary
distances [3–5,13], but some specific regulators (e.g., MBF of
yeast and the related E2Fs of plants and animals) are
paneukaryotic, as are some of their direct target genes
(DNA polymerase, ribonucleotide reductase). Coupled with
experimental accessibility, this conservation of core compo-
nents and connections make the yeast mitotic cycle an
especially good test case for studies of network structure,
function, and evolution.

To expose the underlying logic of this transcription
network, a starting point is to decompose the cell cycle into
its component phases (i.e., G1, S, G2, M) and link the
pertinent regulatory factors with their immediate regulatory
output patterns, here in the form of phasic RNA expression.
One way to do this is to integrate multiple genome-wide data

types that impinge on connection inference, including
factor:DNA interaction data from chromatin IP (ChIP)
studies, RNA expression patterns, and comparative genomic
analysis. This is appealing partly because these assays are
genome-comprehensive and hypothesis-independent, so they
can, in principle, reveal regulatory relationships not detected
by classical genetics. However, the scale and complexity of
these datasets require new methods to discover and rank
candidate connections, while also accommodating consider-
able experimental and biological noise (e.g., [14–19]). Micro-
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array RNA expression studies in budding yeast have
identified 230 to 1,100 cycling genes, the upper number
encompassing nearly a fifth of all yeast genes [1,2,8,20].
Specifics of experimental design and methods of analysis
contribute to the wide range in the number of genes
designated as cycling, but there is agreement on a core set
of nearly 200. Yeast molecular genetic studies have estab-
lished that transcriptional regulation is critical for control-
ling phase-specific RNA expression for some of these genes,
though this does not exclude modulation and additional
contributions from post-transcriptional mechanisms. About a
dozen Saccharomyces transcription factors have been causally
associated with direct control of cell cycle expression
patterns, including repressors, activators, co-regulators, and
regulators that assume both repressing and activating roles,
depending on context: Ace2, Fkh1, Fkh2, Mbp1, Mcm1, Ndd1,
Stb1, Swi4, Swi5, Swi6, Yhp1, and Yox1. These can serve as
internal control true-positive connections. Conversely, a
majority of yeast genes have no cell cycle oscillatory
expression, and true negatives can be drawn from this group.
A practical consideration is how well the behavior of a
network is represented in critical datasets. In this case, cells in
all cell cycle phases are present in the mixed phase,
exponentially growing yeast cultures used for the largest
and most complete set of global protein:DNA interaction
(ChIP/array) data so far assembled in functional genomics
[21]. These data are further supported by three smaller
studies of the same basic design [22–24]. This sets the cell
cycle apart from many other transcription networks whose
multiple states are either partly or entirely absent from the
global ChIP data. Equally important are RNA expression data
that finely parse the kinetic trajectory for every gene across
the cycle of budding yeast [1,2] and also in the distantly
related fission yeast, S. pombe [3–5]. This combination of highly
time-resolved RNA expression data and phase-mixed (but
nevertheless inclusive) ChIP/array data can be used to assign
protein:DNA interactions to explicit cell cycle phases, while
evolutionary comparison with S. pombe highlight exceptionally
conserved and presumably fundamental network properties.

Many prior efforts to infer yeast transcription network
connections from genome-wide data ([15–17,25,26] were

designed to address the global problem of finding connection
patterns across the entire yeast transcriptome by using very
large and diverse collections of yeast RNA, DNA, and/or
chromatin immunoprecipitation data. The present work
focuses instead on a single cellular process and its underlying
gene network, which represents a natural level of organiza-
tion positioned between the single gene at one extreme and
the entire interlocking community of networks that govern
the entire cell. To model regulatory factor:target gene
behavior, we adapted neural networks to integrate global
expression and protein:DNA interaction data.
Artificial neural networks (ANNs) are structural computa-

tional models with a long history in pattern recognition [27].
A general reason for thinking ANNs could be effective for
this task is that they have some natural similarities with
transcription networks, including the ability to create non-
linear sparse interactions between transcriptional regulators
and target genes. They have previously been applied to model
relatively small gene circuits [28–30], though they have not, to
our knowledge, been used for the problem of inferring
network structure by integrating large-scale data. We
reasoned that a simple single-layer ANN would be well-suited
to capture and leverage two additional known characteristics
of eukaryotic gene networks. First, factor binding in vivo
varies over a continuum of values, as reflected in ChIP data,
in vivo footprinting, binding site numbers and affinity ranges,
and site mutation analyses. These quantitative differences can
have biological significance to transcription output by
affecting cooperativity, background ‘‘leaky expression’’ or
the lack of it, and the temporal sequencing of gene induction
as factors become available or disappear. This is quite
different from a world in which binding is reduced to a
simple two-state, present/absent call. Neural networks are
able to use the full range of binding probabilities in the
dataset. Second, ANNs can give weight and attention to
structural features such as the persistent absence of specific
factors from particular target groups of genes. This ‘‘negative
image’’ information is potentially important and not used by
other methods applied to date [15,21,31,32]. The inherent
ability of ANNs to use these properties is a potential strength
compared with algorithms that rest solely on positive
evidence of factor:target binding or require discretization
of binding measurements into a simplified bound/unbound
call.
ANNs have been most famously used in machine learning

as ‘‘black boxes’’ to perform classification tasks, in which the
goal is to build a network based on a training dataset that will
subsequently be used to perform similar classifications on
new data of similar structure. In these classical ANN
applications, the weights within the network are of no
particular interest, as long as the trained network performs
the desired classification task successfully when extrapolating
to new data. ANNs are used here in a substantially different
way, serving as structural models [33]. Specifically, we use
simple feed-forward networks in which the results of interest
are mainly in the weights and what they suggest about the
importance of individual transcription factors or groups of
factors for specifying particular expression outputs.
Here ANNs were trained to predict the RNA expression

behavior of genes during a cdc28 synchronized cell cycle,
based solely on transcription factor binding pattern, as
measured by ChIP/array for 204 yeast factors determined in
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Synopsis

A current challenge is to develop computational approaches to infer
gene network regulatory relationships by integrating multiple types
of large-scale functional genomic data. This paper shows that simple
artificial neural networks (ANNs) employed in a new way do this very
well. The ANN models are well-suited to capitalize on natural
properties of gene networks in ways that many previous methods
do not. Resulting gene network connections inferred between
transcription factors and RNA output patterns are robust to noise in
large-scale input datasets and to differences in RNA clustering class
inputs. This was shown by using the yeast cell cycle gene network as
a test case. The cycle has multiple classes of oscillatory RNAs, and
Hart, Mjolsness, and Wold show that the ANNs identify key
connections that associate genes from each cell cycle phase group
with known and candidate regulators. Comparative analysis of
network connectivity across multiple genomes showed strong
conservation of basic factor-to-output relationships, although at
the greatest evolutionary distances the specific target genes have
mainly changed identity.
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an exponentially growing culture [21]. The resulting ANN
model is then interrogated to identify the most important
regulator-to-target gene associations, as reflected by ANN
weights. Ten of the twelve major known transcriptional
regulators of cell cycle phase-specific expression ranked at
the very top of the 204-regulator list in the model. The cell
cycle ANNs were remarkably robust to a series of in silico
‘‘mutations,’’ in which binding data for a specific factor was
eliminated and a new family of ANN models were generated.
Additional doubly and triply ‘‘mutated’’ networks correctly
identified epistasis relationships and redundancies in the
biological network. This approach was also applied to two
additional, independent cell cycle expression studies to
illustrate generality across data platforms, and to probe
how the networks might change under distinct modes of cell
synchronization.

Analysis of the weights matrices from the resulting models
shows that the neural nets take advantage of information
about specifically disfavored or disallowed connections
between factors and expression patterns, together with the

expected positive connections (and weights) for other factors,
to assign genes to their correct expression outputs. This led
us to ask if there is a corresponding bias in the biological
network against binding sites for specific factors in some
expression families as suggested by the ANN. We found that
this is the case, in multiple sensu stricto yeast genomes
relatively closely related to Saccharomyces cerevisiae, and also in
the distantly related fission yeast S. pombe. This appears to be a
deeply conserved network architecture property, even
though very few specific orthologous genes are involved.

Results

Classifier ANNs were trained to predict membership in cell
cycle phase-specific RNA clusters, based on global tran-
scription factor binding data (Figure 1). As expression input
data, these ANNs used time course microarray data [2] for 384
cycling genes that had been grouped into five clusters by an
expectation maximization (EM) algorithm [9]. As measured by
receiver operator characteristic (ROC) analysis, these clusters
are quantitatively well-separated from each other, with less

Figure 1. The Artificial Neural Network Architecture

(A) Shown is the simple single layer network we trained to predict expression behavior based on the in vivo binding activity of ;75% of the transcription
regulators in yeast. A 204-dimension vector containing the measured transcription factor binding data from [21] was used as the input vector. Given this
binding vector, the ANN was trained to predict which of the five cell cycle expression classes (clusters) each gene belongs to. These expression classes
were determined using EM MoDG.
(B) Matrix representation of the ANN. Each matrix cell, Wc,r, represents the real-valued connection strength, or weight, between a regulator (r) and an
expression class (c) and is shown in (A) as an edge between a regulator and an expression class. These weights represent the importance of binding
activity or inactivity for each transcription factor in associating a member gene with its expression class (cluster) under the ANN model.
doi:10.1371/journal.pcbi.0020169.g001
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than 10% overlap at their margins with any other clusters,
except that the S-phase cluster (EM3) was somewhat less well-
separated from its kinetic neighbors, EM2 and EM4 [9]. The
primary goal of the ANN modeling is to infer the set of
regulatory connections that underlies each of the cell cycle–
phased expression groups. Note that a given cluster might be
composed of more than one regulatory subgroup; it need not
be the case that all associated regulators interact with all–or
even most–of the genes in a cluster. ANNs were trained to
assign expression cluster membership for each gene based on
204 measured binding probabilities from ChIP/array experi-
ments ([21]). To accommodate the scarcity of data, while
minimizing effects of overtraining, we generated an average-
of-bests artificial neural network (aobANN) (Methods). As
anticipated, the aobANN classified input genes best, correctly
assigning the expression class of 86% of included cell cycle
genes (Figure 2). Individual best-of-ten networks, each trained
on 80% of the data and tested on the remaining 20%
correctly assigned expression class membership for ;50% of
the genes, with an accuracy range between 40% and 65%,
whereas only 27% of genes would be expected to be classified
correctly if genes were classified by a random process (Figure
S1). As shown in Figure S2, a substantial fraction of genes
(32%) are always classified correctly by every ANN, another

subset (28%) are never classified ‘‘correctly,’’ and the
remaining fraction (40%) are intermediate. An examination
of possible correlates of high or low predictability, including
absolute level of RNA expression and bidirectional versus
unidirectional orientation of the gene relative to its upstream
neighbor found no correlation except that the EM2 (late G1)
class is enriched in highly predictable genes, while the EM5
(M phase expression peak) is most impoverished (Figure S2).
The major conclusion from global statistics is that individual
ANNs and the aobANN have developed weighting schemes
that are effective in connecting factor binding information
from ChIP/array to RNA expression patterns, even in the
presence of considerable experimental noise that is a widely
acknowledged property of the input datasets.

Parsing the ANN Weight Matrix to Infer Regulatory
Relationships
We next interrogated the aobANN weight matrix to find

out which regulators are most important for assigning genes
to specific gene expression behavior. Regulators were sorted
by a sum-of-squares (SOS) rank calculation (see Methods)
over the expression classes. The factor ranking, based
exclusively on the ANN weights, assigned nearly all tran-
scription factors previously definitively associated with

Figure 2. Confusion Array Display for the aobANN versus Membership in EM MoDG Expression Class

Expression class predictions from the aobANN (based on ChIPchip factor binding data) are displayed in a confusion array against the starting expression
classes from EMDoG clustering. Each of the 40 contributing ‘‘best’’ ANNs were trained on 80% of the data and tested on the remaining 20% to evaluate
performance. They were selected as the best performing network out ten networks trained on the same data split, but initialized with differing random
seeds. These two classifications have a similarity of .86 by linear assignment [9]: an LA value of 1.0 would indicate perfect classification success by the
ANNs.
doi:10.1371/journal.pcbi.0020169.g002
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phase-specific regulation to the very top of the ordered list.
Figures 3 and 4 summarize data from the weight matrix of the
aob network. A plot of the sum of squared weights for each
factor shows that the top 10% of all regulators carry much
higher weights than all the rest, and the dropoff in weight is
quite dramatic (Figure 3A). Focusing on the top 20%, the
relative contribution to each sum derived from positive (blue)

versus negative (red) weights is shown (Figure 3B). Both
negative and positive weights contribute substantially, and
the way in which weights associate with each individual
expression class is shown in Figure 3B. The top regulators in
this ranking are Swi6, Ndd1, Stb1, Fkh2, and Mbp1, all of
which are known direct regulators of the cell cycle. In most
instances high positive weight for a factor (blue) is associated

Figure 3. Weight Matrix Analysis for the aobANN

(A) Regulators were sorted based on the SOS metric (Methods and text), and the resulting total SOS rank for each regulator is plotted as a bar.
(B) The top 20 regulators are shown, ordered by importance in predicting expression behavior using the sum-of-squared weights metric. The top panel
reproduces a zoomed-in view of the top 20 regulators as in (A). The bar representing each regulator is split to display positive (red) and negative (blue)
contributions. The left-hand column shows a trajectory summary for each expression cluster as classified by EM MoDG. The right-hand side color map
represents the weight matrix where expression classes are displayed along the rows corresponding to the drawn trajectory summaries. Regulators are
sorted along the columns in rank order. Each cell is colored according to its value in the weights matrix.
doi:10.1371/journal.pcbi.0020169.g003
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with the expression class or pair of classes expected from
more detailed molecular genetics studies. For instance, Swi6,
Stb1, and Mbp1 are the first, second, and sixth ranked
regulators, and they are known to function together at genes
expressed in EM2 (G1). Mbp1 binds DNA directly, and Swi6
and Stb1 bind to Mbp1 [34,35]. Ndd1 and Fkh2, the second
and fourth ranked regulators, also function together in a
molecular complex [36]. In the aobANN model, they are
associated with EM3/4 (S/G2), again recapitulating expected
domain of action.

ANN Stability
Regulator-to-target relationships suggested by the ANNs

were very stable with respect to permutation of the input
DNA binding data and to a range of biologically reasonable
differences among input expression clusterings (classifica-
tions). We find the relative ranking of the top regulators to be
stable across all networks generated during the training
paradigm (Figure 5). The ranking of regulators was also stable
across networks that were trained to predict expression
classes derived from clusterings with either more or fewer
clusters (the experiment was performed over K¼ 4, 5, 6, 7, or
8, and results are summarized in Figure S4). Lower K values
than 4 fit the data poorly and are therefore irrelevant; and
still higher K values above 8 force an entirely unjustified
oversplitting of clusters that is clearly inappropriate.

In Silico Network Mutations
We next performed a series of in silico network mutations

in which binding data for one, two, or three top-ranked

regulators were removed before training a new set of ANNs.
The resulting deletion ANNs were used to produce a new aob
network, as before, and the corresponding sum of squared
weights ranking was constructed (Figure 6). These perturba-
tions further test network stability and also identify specific
instances of factor redundancy. Overall the ANNs proved
remarkably stable to elimination of high-ranking factors.
When each of the top 20 were eliminated singly, the identity
of the remaining top regulators proved very stable (Figure
6A). The color code for each cell reflects its rank order from
the parental, unperturbed network (shown in the bottom
row). Each subsequent row reports the outcome for the
mutant network with the indicated factor or factors removed.
Although the cells are placed according to their rank order in
the mutant AOB network, the color is based on the ranking
from the unperturbed, ‘‘wild-type’’ network. In general,
factors from lower rankings were not promoted into the
high ranking (dark blue) domain, nor were previously highly
ranked factors (blue) demoted significantly into yellow and
red domains. Thus, the first major conclusion from the
mutation experiments is that neither the connections the
ANNs infer nor the absolute performance of the ANNs
depends heavily on a single factor or even a factor pair. The
ability of the models to highlight other important connec-
tions is not compromised by elimination of any high-scoring
factor.
Figure 6B shows the same mutant networks at higher

resolution, so that all factors whose original rank was .50
appear in the summary as white cells. Original rank order is

Figure 4. ANN Weights Sorted According to Expression Class

ANN weights from the aob network for the top-ranking and bottom-ranking (high negative weights) for each class. The regulator ranking for each class
is determined by its value in the aobANN weights matrix for each expression class. Detailed annotations for these regulators are given in Table 1.
doi:10.1371/journal.pcbi.0020169.g004
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again indicated by the color of each cell, although the color
scale has been shifted to make it more sensitive to changes in
rank among the top 50 regulators. A few specific exceptions to
overall stability were observed, in which a relatively low-
ranked regulator has been elevated by mutation into higher
ranks. The most striking example is Swi4, which is demarcated
with a star. Swi4 is a very well-studied cell cycle transcription
factor that did not fall in the top 10% in the wild-type
network (it ranked 80th). As shown in Figure 6C, ‘‘mutant’’
networks for all factors associated with the G1 (EM2) caused
Swi4 to advance in rank, with double or triple mutations
moving it progressively higher. We discuss later the causes and
consequences of Swi49s initial low ranking in the wild-type
ANN and the implications for detecting biological redun-
dancy. However, the general conclusion for ANN analysis is
that systematic single and multiple perturbations of high-
ranking regulators provide a way to detect redundancy, even
when a connection—here Swi4 with G1—was not evident in
the unperturbed wild-type ANN. Additional double and triple
mutations for the major cycle classes were performed and no
other change as remarkable as Swi4 was found.

Out-of-Sample Accuracy
We next tested out-of-sample accuracy, which is the ability

of the training paradigm to generalize to another set of
independently collected binding measurements, in which
both experimental error and biological error will differ from
the first series of models. We constructed a new aobANN
trained again from data collected from Harbison, but
included only binding measurements from the 111 regulators
available in both the Harbison et al. (2004) study and the
independent Lee et al. (2002) study. Despite biological and
experimental difference between the two datasets, this
aobANN delivered a highly significant out-of-sample accu-
racy of 56%, which is 17 standard deviations from the average
linear assignment score (.27 6 0.017) of a random partition-
ing of the genes, where class sizes are determined by drawing
from a multinomial distribution based on the cluster sizes.

Regulator Rank Stability and Power
The stability of weight ranks across the 40 individual ‘‘best’’

networks that contribute to the aobANN was examined. We
postulated that factors whose rankings are less stable across
many individual networks would also be less likely to be
functionally significant than factors showing high stability
across the individual networks, even if the median SOS
weight is quite high in all cases. The well-known regulators of
cell cycle transcription, ranking in the top dozen, showed
greatest stability, and a substantial discontinuity was found to
separate the top 20 from the remaining factors (Figure 5). We
then asked how well the top regulators can perform if they
are used to build a new aobANN over a sweep that ranges
from three to 28 regulators. This experiment showed that a
network built from the top 20 regulators performed almost as
well as the full 204-regulator network and ranked its
regulators very similarly (Figure S3). The top five regulators
on their own (Swi6/Mbp1/Stb1 plus Fkh2 and Ndd1) were
surprisingly powerful in parsing G1 versus G2/M. Conversely,
an aobANN composed from the bottom 184 regulators was
much less successful in predicting expression.

ANN Models from Independent Cell Cycle Experiments
We next independently clustered Cdc15 TS and alpha factor

synchronized cell cycle RNA expression data [1], and used
these new clusters to build two new ANN cell cycle models.
These datasets are from two different cell cycle experiments,
each measured using deposition microarrays and a ratiomet-
ric design, in contrast to the cdc28 arrest described above,
which used Affymetrix data. By focusing on each synchroniza-
tion method individually, rather than using a merged dataset,
we aimed to capture possible differences in the biology that
might arise from different methods of synchronization, while
also revealing the relationships that are robust across the three
experiments and two assay platforms. The ChIP/chip dataset is
unique and was therefore used to build ANNs across cdc28,
cdc15, and alpha factor experiments.
As demonstrated with the cdc28 data above, we found these

additional ANN models return the same core cell cycle
regulators highlighted by the cdc28 ANNs. Six of these; Ndd1,
Mbp1, Swi5, Stb1, Swi6, and Fkh2 are among the top seven
regulators found, regardless of which cell cycle data and
clusterings were used as input to the ANNs. This robustness
in the central regulatory relationships is quite remarkable
considering that, of 780 genes belonging to at least one of the

A

B

Figure 5. Neural Network Rank Order Stability

(A) Regulators are sorted by their SOS rank order (see text and Methods).
The line indicates the mean rank for each regulator across each of 40
best ANNs, with variance of each ranking indicated by the error bar.
(B) Top 20 regulators show high stability across ANNs.
doi:10.1371/journal.pcbi.0020169.g005
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cycling datasets, only 147 genes are common to all three
experiments. Quantitation of pairwise clustering overlap,
using the linear assignment metric, makes it very clear that
the gene number and clustering patterns differ substantially
(Figure 7). Thus, ANNs highlight major shared cell cycle
relationships, even though the gene sets used and the
clusterings are quite different (Table 1).
Cdc15ts-synchronized cells are arrested at the end of M

phase [1]. Correspondingly, we find the expression cluster
that peaks first—at 10 min in the Cdc15 data—associates
strongly with the early G1 factors Swi5 and Ace2 (EM1 in
Figure 7). Note that in the previous cdc28 ANN, the same
association was made, even though—under that release
condition—genes of this regulatory group are not upregu-
lated until the second cycle after release [9] and above). Alpha
factor arrest is similar in this way to cdc28, reflecting their
similar blockade points. Thus, the ANNs easily related the
cdc15 early G1 cluster to the alpha factor and cdc28 early G1
clusters, even though the cluster trajectory is strikingly
different and the clusters themselves contain no individual
genes in common with the cdc28 or alpha factor datasets
(Figures 4, 8, and 9). Other high-ranking regulators appear in
one or two, but not all three ANN cell cycle models. Yox1 and
Yhp1, for example, differ among the models, because the
gene classes derived from the RNA clusterings differ in
content. Finally, Pho2 emerges as a potentially significant
regulator associated with an M-phase kinetic pattern in the
two Spellman datasets, consistent with the previously
reported Pho2/Pho4 mediated, cell cycle expression for some
phosphate-regulated genes [37]. This is thought to be due to
intracellular polyphosphate pools, which vary through the
cycle in some culture conditions, but can also be influenced
by growth media and history.

Discussion

We found that single-layer ANN classifier models can
effectively integrate global RNA expression and protein:DNA
interaction data (ChIP/chip). The resulting models prom-
inently highlight factors known to drive the transcriptional
regulatory network underlying cell cycle phase-specific
expression. The weight matrices from these ANN models
generally associated previously known cell cycle transcription
factors with the cell cycle phase they are thought to regulate,
and they did so as well as or better than other methods, based
on flexible iterative thresholding [15], network dynamics [16],
or, most recently, Bayesian methods [31]. In general, we feel
that more conventional statistical approaches and ANNs
complement each other. Both generate hypothesized rela-
tionships and rank them. The strength of the single layer
neural network architecture used here is that it mirrors

Figure 6. In Silico Network Mutations

Shown are results from training ANNs missing one or more regulators as
indicated on the left margin of each heatmap. Within each heatmap,
each cell represents a regulator, the position of the cell along the x-axis
of the plot is determined by the mutated network, but the color is
indicative of the regulator’s rank in the unperturbed network (as shown

in Figure 3). The lowest strip shows the rank order color spectrum for the
wild-type network.
(A) An overview showing the overall rank stability of the regulators
across all mutant networks generated.
(B) A higher resolution view of the top-ranked regulators for each mutant
network. Only the top 50 regulators are shown, and the color spectrum is
adjusted to only span 1–50. Any regulator that was ranked within the top
50 regulators in a mutant network, but not in the wild-type network, is
shown as white. The position of Swi4 in each network is denoted by *.
(C) A zoomed-in version of our mutant network analysis focusing only on
networks generated by the top G1 regulators (Swi6, Mbp1, Stb1, Ace2,
Swi5, Swi4).
doi:10.1371/journal.pcbi.0020169.g006
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several basic properties of natural gene networks: 1) both
presence and absence of factor binding determine when and
where a gene is expressed; 2) factor occupancy in vivo is a
continuum, not an all-or-nothing phenomenon, and the
graded differences can have biological significance. For
example, graded binding of the transcription factor Pha4
creates spatiotemporal gradients of target gene expression
during pharyngeal development in C. elegans [38]. These
features of the neural network distinguish it from algorithms
that depend solely on positive evidence of binding and
require discretization of the binding signal to bound or
unbound. A further distinction is that the neural network
models can be easily and informatively ‘‘mutated’’ to ask how
the overall network connection patterns and outputs are
affected by specific changes, such as eliminating data for
individual factors, combinations of factors, or making even
larger structural changes. The obvious complementary
strength of statistical methods is in quantitative thresholding
based on significance measures.

A general conclusion that can be drawn from this work
comes from the overall success of ANNs in classifying
expression output according to transcription factor binding
patterns. This might not have been true, but this overall
observation argues strongly that transcriptional regulation,
rather than differential post-transcriptional regulation, is the
dominant mechanism in shaping phase-specific RNA preva-
lence clusters. This observation does not preclude a role for
other mechanisms operating on a minority of genes (perhaps
explaining some difficult-to-predict genes) or a post-tran-
scriptional role that is uniform over an entire class. For
example, confusion matrix analysis of expression classes
versus the predicted expression pattern from the ANNs
identified a group of genes with EM3 (S phase) kinetics that
comprise 10% of that cluster, but are associated with the EM2

G1 group by the ANN model (Figure 2), and these are
reasonable candidates to be differentially regulated by post-
transcriptional processes such as slower turnover.

Relating the Inferred Connections to Known Biology
The sum-of-squared weights metric proved to be simple

and useful for objectively ranking regulators according to
their importance in the network model, regardless of the
input expression dataset. Even though ANN weights are not
direct physical measures of binding, the resulting rankings
correspond remarkably well with what is known from decades
of work on transcription in the yeast cell cycle. The ANN
models even highlighted subtle regulatory differences be-
tween different cell cycle synchronization methods. The top
dozen of the 204 total regulators in the cdc28 ANN model
contained ten of 12 transcription factors present in the
Harbison ChIP dataset and are known to operate on cycling
genes. Swi6 ranked at the top of the cell cycle regulators list in
the cdc28, cdc15, and alpha factor ANN models, and is always
associated with G1 expression. Swi6 also shows a relative
absence of binding to genes highly expressed during G2. The
pattern of weights evaluated across the RNA expression
clusters provides additional information. For instance, the
cdc28 ANN weight vector for Mbp1 across the cell cycle
clusters tracks very closely with Swi6 (correlation coefficient r
¼ .92). This mirrors underlying molecular biology in which
Mbp1 and Swi6 combine to form the heteromeric active G1
transcription factor MBF. Stb1 is similarly grouped with Swi6
and Mbp1 as a co-regulator of G1 (cdc28 EM2) genes (r¼ .95
and .89 for Stb1 with Mbp1 or with Swi6, respectively). Ace2
and Swi5 are paralogous factors with similar DNA binding
target sites [39,40], and both are positively associated with the
early G1 (cdc28 EM 1) expression profile with similar in-
weights profiles (r ¼ .71).
Also confirming expectations from studies of target genes

and epistatsis predictions, Fkh1 and Fkh2 were associated
with cdc28 S/G2 expression clusters by the ANN. This implies
that joint association is consistent with double knockout
experiments, which indicate that the two complement each
other [41], and with studies showing the two factors bind the
same sites in vitro [42]. Examined in detail, the cdc28 ANN
weights suggest a more nuanced view, in which both Fkh1 and
Fkh2 are important for some genes in early S/G2 (EM3),
whereas S/G2 class genes (cluster EM4) rely more heavily on
Ndd1 and Fkh2 and less on Fkh1. RNA expression data for
Fkh1 and Fkh2 is consistent with this, since Fkh1 increases in
expression nearly 20 min before Fkh2, in expression data
collected by Cho et al. in 1998 [2]. This is also consistent with
a detailed study of in vivo binding at a few specific target
genes [42], which showed that the two Fkh factors do not bind

Figure 7. Overlap of Cell Cycle Groups

Venn Diagram for the total number of genes cycling in each of the three
synchronization methods after our filtering and normalization.
doi:10.1371/journal.pcbi.0020169.g007

Table 1. Similarity of Clustering Results from Different
Synchronization Methods as Measured by Linear Assignment [9]

Synchronization Method

Alpha Factor Cdc15 Cdc28

Alpha Factor 1.00 0.57 0.61

Cdc15 – 1.00 0.47

Cdc28 – – 1.00

doi: 10.1371/journal.pcbi.0020169.t001s
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identically in vivo, and that there is a distinction between
genes of the so-called Clb2 cluster (a subset of Cluster EM4
here), that are dominated by Fkh2 in conjunction with Mcm1/
Ndd1, versus Fkh1, which is thought to bind independently.
The alpha factor and cdc15 ANNs place diminished emphasis

on Fkh1, compared with cdc28 ANNs, which is consistent with
the idea that the two factors have different molecular
activities and targets.
Time and sign of action. Cdc28 ANN weight vectors for

Mcm1 and Yox1 were also correlated (r ¼ .69), defining an

A

B

Figure 8. Transcription Factor Rankings by aobANN Weights for Cdc15 Syncrhonized Data

(A) ANN weights are sorted by the SOS metric as in Figure 3B.
(B) ANN weights from the aob network as in Figure 4 for ANNs trained to predict RNA expression clusters derived from yeast cultures synchronized
using Cdc15 TS mutant [1].
doi:10.1371/journal.pcbi.0020169.g008
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association with EM5 target genes where they displayed the
two highest positive weights. They are known to act on some
of the same genes, including EM5 group members [43]. In this
example, the ANN is picking up molecular effects that are of
opposing molecular activity, with Yox1 repressing Mcm1

activity. This illustrates an issue of interpretation. Because
the original binding data are from a mixed phase cell
population, it reveals nothing about when during the cycle
detected binding occurs. For positive acting factors whose
binding and function are contemporaneous, we see a peak of

A

B

Figure 9. Transcription Factor Rankings by aobANN Weights for Alpha Factor Arrest Data

(A) ANN weights are sorted by the SOS metric described in the text and in Figure 3B.
(B) ANN weights from the aobANN network, as in Figure 4, for ANNs trained to predict RNA expression clusters derived from yeast cultures synchronized
using alpha factor arrest to syncrhonize cells [1].
doi:10.1371/journal.pcbi.0020169.g009
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binding simply correlated with a peak of RNA expression.
But for a repressor acting on genes expressed in M phase,
binding occurs at other times (late G1, S, G2 alone, or in
combinations [43]). Thus, the ANN correctly connected the
factor with its targets; but only by independently determin-
ing the mode of Yox1 action, or by adding temporally
resolved binding data, can the sign and timing of action be
discerned. For factors whose action—repressing or activat-
ing—is unknown or is conditional depending on context,
temporally resolved ChIP data will be needed to infer the
mode and time of action.

Swi4, a ‘‘missing’’ regulator. The ANN models did not
assign high weight to Swi4, which one would expect to rank
highly. Although Swi4 is a well-known direct transcriptional
regulator of Early G1 genes, providing the DNA binding
moiety of SBF factor [44], it was not even close to the top 20
in the cdc28 aobANN, ranking 80 of 204. Its preferential
association with G1 target genes only came to light when we
performed in silico mutation analyses, eliminating one or
more G1 factors. There are two possible explanations for its
weak values in the wild-type ANNs, and they are not
mutually exclusive. One simple possibility is that redun-
dancy with other G1 regulatory factors is widespread, and
this masks Swi4 when training the ANNs. Especially if
coupled with generally less robust signals in the ChIP assay,
the ANNs might have simply ignored Swi4. A second
explanation is that Swi4 has greater breadth of binding
across multiple clusters than its paralog, Mbp1. In this
scenario, Swi4 spills over, binding to members of multiple
cell cycle expression clusters when compared with other G1-
specific regulators such as Mbp1, Swi6, or Stb1. This would
give Swi4 less discrimination power in classifying genes,
despite active G1 binding and could arise from purely
technical issues, or from an unappreciated biological role
outside its function in SBF.

An independent analysis of the Harbison ChIP data in the
context of a much larger library of expression data across
many conditions other than cell cycle phases, using a
different computational approach, supports the idea of
broad Swi4 distribution among cell cycle regulatory classes
[15]. Specifically, the GRAM algorithm uses coexpression
patterns to incorporate into the connection map ChIP
interactions that are below statistical significance when
evaluated on their own [15,21,24]. They reported regulatory
modules consisting of pairs of factors in which Swi4 is
partnered by binding and expression data with one or more
factors from each and every expression cluster: Ace2, Fhk2,
Ndd1, and Mcm1, as well as the ‘‘classic’’ associated G1
factors, Mbp1, Stb1, and Swi6. In addition, an entirely
independent set of ChIP/chip measurements and analysis
from Snyder and colleagues [22] showed substantial Swi4
binding activity upstream of non-G1 genes. Taken together,
these data suggest Swi4 might have one or more previously
unappreciated functions within exponentially growing cells
that are distinct from its classic role as part of SBF.

Finally, a picture of partly, but not entirely, redundant
functions for the Swi4/Mbp1 paralogs was also emphasized in
a recent genetic study [45]. We therefore think it likely that
the way the unperturbed ANNs treat Swi4 reflects partial
biological redundancy combined with its more widely
distributed binding across non-G1 clusters.

Potential Newly Identified Regulatory Connections
Do the ANNs suggest new factors associated with phase-

specific expression? Focusing on the cdc28 example, and
using stability across ANNs as an added filtering criterion,
factors ranking above Leu3 stood out. In particular, both
Usv1 and Dal81 are interdigitated among the otherwise well-
documented ten major cell cycle regulators, although not
previously associated with this function to our knowledge. A
different explanation is that factors such as Usv1, Dal81, and
a handful of others ranking in the top 20, may be in the ANN
model for reasons having nothing to do with the cell cycle
explicitly, but having much to do with the partially over-
lapping architecture of transcriptional networks in eukar-
yotes. Thus, we expect that some genes—perhaps most—
within cycling clusters will also belong to one or more other
functional modules. In the context of those other functions,
they will presumably be regulated by factors that have
nothing to do with directing cell cycle phase patterns. This
kind of network intersection and partial overlap is strikingly
evident in global module maps [25]. Some factors appearing
in the ANN top 20 may be there for this reason. There are
others (Pho2, for example) that seem to be drawn into
regulating phase-specific expression because of metabolic
links (in this case through polyphosphate pools and mem-
brane biogenesis [37]). We expect that the overall approach
we have taken for the cell cycle network, using global ChIP/
chip data, could easily be extended to any network whose
states of interest are well-represented in available ChIP/chip
data, and whose RNA datasets are of sufficient quality and
resolution to cluster the expression behaviors of interest.
However, a decisive improvement in sophistication of the
ANN model, and the hypotheses it generates, will come with
time-resolved ChIP data.

Neural Network Weights Predict Evolutionarily Conserved
Binding Motif Frequencies
If binding data are predictive of expression class, and if

meaningful transcription factor binding is motif-specific,
then it should be possible to independently verify relation-
ships from the weights matrix by measuring the frequency of
binding motifs. We can also ask if any observed site
enrichment and depletion are evolutionarily conserved, as
would be expected if they mediate functionally relevant
factor binding. Motif frequency across cell cycle clusters in
multiple yeast species correlated remarkably well with bind-
ing probabilities from the ChIP data and also with the ANN
weights trajectories across the same clusters (Figure 10). The
conserved motif data for Mbp1 and Swi5/Ace2, and Fkh1/
Fkh2, all factors with well-defined binding motifs, provided
independent support for conclusions from the ANN, since
the ANN was constructed without any input information
about DNA sites.

Conservation of Site Enrichment and Depletion over Great
Evolutionary Distance
The distribution of MCB sites across the cycle phases was

striking and prompted us to ask if both enrichment and
depletion holds over very great evolutionary distance. If
specific depletion is a functionally important network
characteristic, then we would predict that it would be
retained over very great evolutionary distance. We performed
the same site enrichment analysis across cell cycle gene classes
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in S. pombe, which is said to be as distant from budding yeast as
are humans (;500 my). We used the EM algorithm to cluster
the S. pombe cycling data of [3] in the same way that the
various Saccharomyces experiments had been clustered [9]. At
this evolutionary distance there are no large blocks of
conserved noncoding DNA sequence. S. pombe does, however,
have an identified MBF ortholog, and the short binding motif
for MBF shows significant site enrichment in our expression
cluster 3, together with significant depletion from cluster 5,
mirroring the pattern in budding yeast (Figure 11). The
positive regulator-to-target group conservation was noted
previously [3–5], but in this study we were able to detect it
without strongly prefiltering gene sets for their explicit
experimental responsiveness to MBF. The new observation
here is that depletion of MBF sites, operating specifically in
the group of genes normally expressed later in the cell cycle,
is a very highly conserved property. This cis-motif depletion

suggests there is selective restriction against MBF sites and
that it is phase-specific: it does not apply broadly to most
genes in the genome, but does apply preferentially to genes in
late cell cycle cluster (in this case cluster 5 for S. pombe, cluster
4 for S. cerevisae). In both organisms, this cluster contains
genes whose products are involved in mitosis, and it seems
possible that their heterochronic expression during G1/S
phases, as MCB sites might cause, could disrupt proper
control or execution of S phase. However, the observed
conservation is apparently a network property, even though
the specific genes in each phase group are—mainly—not
orthologous. Thus, the surprising observation that most genes
in these oscillating clusters are not the same ones in pombe
and Saccharomyces (reviewed in [13]), if correct, suggests that
conserved enrichment and depletion of regulatory motifs are
network architecture properties that are shared across

Figure 10. Enrichment and Depletion of Binding Sites in Individual Cell Cycle Phase Classes for Transcription Factors Highly Ranked in aobANNs in

Budding Yeast Genomes

For several regulators highlighted by strong positive or negative association with particular expression classes in Figure 4 (denoted parenthetically), site
enrichment p-values were calculated for each EM MoDG expression cluster. Each p-value was calculated using only the cell cycle identified genes that
were also used as input genes to the ANN. Each block of bars along the x-axis represent log p-values (y-axis) for an EM MoDG cluster. Each bar within
these blocks represents the log p-value measurements for a different Saccharomyces species as indicated by the color legend. Enrichment is shown as
positive values (�log p-value), and depletion is shown as negative values (log p-value). The species have been arranged by to reflect evolutionary
distance from S. cerevisiae. From left to right: S. cerevisiae, S. paradoxus, S. mikatae, S. bayanus. A dashed line along the graphs at p-value¼ .05 has been
drawn to help visualize the scale difference between the plots.
(A–D) Enrichment bar charts for the specified binding sites. If the binding site is referred to by a standard name other than that of the regulator that
binds to it, the regulator name is in parentheses. The color map key for each specie is at the bottom.
doi:10.1371/journal.pcbi.0020169.g010
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hundreds of millions of years, even though most specific
genes involved are different.

Materials and Methods
Data pre-processing. The primary expression dataset for modeling

is Affymetrix microarray data measuring RNA levels of nearly every
gene in yeast through two cell cycles, following release from condi-
tional CDC28TS arrest [2]. That time course sampled RNA levels at 10-
min intervals over 170 min, which covers two cycles. These data were
obtained from the original authors and preprocessed in three steps. 1)
Any gene that did not show sustained absolute expression greater than
the 2.5% quantile of the data (an absolute signal of 8) for three
consecutive timepoints was eliminated. 2) For the remaining 6,174
expression vectors, each time point measurement was divided by the
median expression value across all time points for the gene. 3) The
log2 of each ratio was then taken, and these values comprised the
expression matrix for all further analysis. For key model building in
this work, we focused on the subset of expression vectors (384) that
had been identified by Cho et al. as displaying a cell cycle dependent
pattern and also passed the above filter for absolute expression;
operationally we refer to this set as the ‘‘cycling’’ set.

The primary in vivo protein:DNA interaction dataset (ChIP/array)
used here is from [21]. These data were obtained at http://web.wi.mit.
edu/young/regulatory_code/ and the reported p-values were used
directly. Briefly, for each of 204 transcriptional regulators, Harbison
and colleagues constructed a yeast strain containing a myc-epitope-
tagged version of the factor that was inserted into the corresponding
transcription factor locus. Each strain was used to perform three
independent ChIP/array measurements taken from freely cycling
exponential phase cultures. The cells were subjected to standard
formaldehyde crosslinking to attach transcription factors to their in
vivo binding sites, the chromatin was sheared, factor-bound DNA was
enriched by IP, amplified by LMPCR, and fluorescently labeled. ChIP-
enriched DNA was then co-hybridized with control DNA to micro-
arrays containing essentially all intergenic sequences in yeast. A
binding ratio was then calculated for each array feature based on the
relative hybridization signal for targets synthesized from ChIP
enriched DNA versus whole cell extract control DNA. Three biological
replicate experiments were performed, each beginning from an
independent yeast culture. Based on an error model first described
in [46] and the three replicate binding ratios for each intergenic
sequence, a p-value was reported for each upstream intergenic
sequence. This p-value roughly estimates the probability that a given
transcription factor is bound to a particular intergenic sequence.

Neural network implementation and training. Figure 1 illustrates
the overall structure of the ANN trained in this study. Back-

propagation was implemented by the UWBP package [47] to train a
single layer network with no hidden units. Each ANN was trained
using 300 epochs using a learning rate of .002. RNA expression array
data for the subset of 384 cycling genes as described above were
clustered using an expectation maximization algorithm fitting the
data to a mixture of Gaussian probability distributions with diagonal
covariances (EM MoDG [9,48]). Networks to predict cluster member-
ship for each gene based on an input vector composed of ChIP
derived in vivo factor binding probabilities for the 204 measured
regulators in the Harbison dataset. Individual networks were trained
using 80% of the data and tested on 20% of the data. For each 80/20
dataset split, ten neural networks were trained using different
random seeds for each network. The network with the best prediction
accuracy on the testing dataset was then selected and denoted as
‘‘best.’’ This process was then repeated 40 times, splitting the dataset
into different testing and training datasets. The network weights
from the resulting 40 selected ‘‘best’’ networks were then averaged
together to create the aobANN. We focus on this network for
subsequent biological interpretation, with the primary goal of
identifying regulatory connections between transcription factors
and their direct target genes. Because the purpose of this network is
not to repeatedly classify similar data, the implications of over-
training are different than they would be for classical uses of ANNs.
In this unconventional usage, we show by measuring the behavior of
ten internal ‘‘gold standard’’ known cell cycle regulators, that any
‘‘overtraining’’ is not deleterious for the intended goal, which is
extracting a series of ranked hypotheses about regulator-to-output
relationships. Regulators within aobANNs are ranked based on the
median SOS rank across all the individual ANNs trained to generate
the aobANN. The SOS ranking for a regulator within an individual
network is simply the sum of squared weights across the classes in the
weight matrix (

P
c w

2
c;r).

Consensus site enrichment and depletion calculations. To determine
whether an expression cluster showed an enrichment in genes that
contain a particular consensus site, we calculated the likelihood of the
observed enrichment, or depletion, being a chance occurrence
according to a binomial model of occurrence probabilities. We count
the observed number of genes that have at least one instance of a
consensus sequence within the 1 KB directly upstream of the coding
sequence for all genes in an expression cluster versus the number of
genes that would be expected by chance. As no known background
sequence model is completely provably correct, for each consensus
sequence we calculate the expected background frequency ( f̂ ) using a
bootstrapping method. We randomly selected 1,000 different sets of
genes the same size as the cluster being compared (n). These randomly
selected background sets are drawn from either the entire genome or

Figure 11. Binding Site Enrichment and Depletion for S. Pombe

MCB consensus binding site enrichment p-values are shown for S. pombe, based an EM MoDG clustering of expression data from ([3]. Cluster trajectory
summaries as a function of timepoint in the cell cycle are shown for each expression cluster in the top panels; red lines highlight the mean expression
trajectory, and cluster gene number is given in the upper left corner. Below is a bar chart of p-values. p-Values are normalized against only cycling genes
(blue), or are normalized against all genes (red).
doi:10.1371/journal.pcbi.0020169.g011
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from only the ‘‘cycling’’ genes, which were used in training the ANNs.
The number of genes that contain at least a single instance of the
consensus is counted for each randomly selected set. The average
count across the 1,000 samples is normalized and used as our estimate
of the expected number of genes within a cluster that have a single
occurrence within 1 KB upstream (EC). Since the chances of any given
gene within a cluster having a given consensus sequence within the 1
KB upstream can be assumed to be independent, we can estimate the
probability of finding the observed number of counts (OC) using a
standard binomial distribution (Equation 1). If the site is enriched, we
estimate the p-value for the likelihood of finding at least the observed
count, but if the site is depleted we calculate likelihood of finding at
most the observed count (Equation 2).

Pði j c; nÞ ¼ n
i

� � c
n

� �i
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Supporting Information

Figure S1. ANN Prediction Accuracy Histogram and Correlations
with Binding and Expression Levels

We trained 40 ANNs (see Methods) to predict a gene expression
behavior from only the regulator binding activity upstream to its start
of transcription. For each network, we trained on 80% of the data
and tested on the remaining 20%.
(A) The distribution of ANN accuracy across the 40 trained ANNs.
Along the x-axis are bins of accuracy ranges, the y-axis counts the
number of ANNs that showed the designated prediction accuracy.
(B) Displays the relative reproducibility of the ANN rankings. Each
regulator was ranked by its net influence in the ANN using a sum of
squared weights metric across the classes in the weight matrix. Shown
is a scatterplot of the regulator ranks from the first 20 ANNs versus
the second 20 ANNs trained.
(C) Scatterplot of the predictability (fraction of ANNs correctly
classifying a gene correctly) versus mean absolute expression level of
the four highest measured time points for each gene.
(D) Predictability versus mean binding level for the ten highest bound
regulators.

Found at doi:10.1371/journal.pcbi.0020169.sg001 (154 KB PDF).

Figure S2. Distribution of Neural Network Prediction Accuracy
across EM MoDG Expression Pattern Clusters

The y-axis on the top panel measures the number of genes correctly
classified by the indicated fraction of the trained ANNs (x-axis, bin

range specified in the lower right corner of corresponding confusion
array cells). This Expectation Maximization clustering was performed
at the K value of 5, previously determined to be optimal for this
dataset [9]. Each bin is then broken up across the 5 EM MoDG clusters
using a confusion array.

Found at doi:10.1371/journal.pcbi.0020169.sg002 (42 KB PDF).

Figure S3. aobANNs Trained Using Top-Ranked Regulators

aobANNs were trained using top-ranked regulators beginning with
the top three and continuing through the top 30. Training of these
new aobANNs was as described in Methods. Performance of the
resulting aobANNs is plotted as a function of the number of top
regulators included.

Found at doi:10.1371/journal.pcbi.0020169.sg003 (16 KB PDF).

Figure S4. Network Ranks across Varying Cluster Number (K Values)

Results from training ANNs are shown for different clusterings
obtained using cluster number (K) over the range from k¼ 4 to k¼ 8
clusters. Within each colored heatmap, an individual cell represents a
regulator; the position of the cell along the x-axis of the plot s
specified by K; and the color of the cell indicates the regulator’s rank
in the original k ¼ 5 network (as shown in Figure 3). Thus the color
pattern changes seen reflect the effect and magnitude of change due
to use of each different clustering.
(A) An overview of all regulators that shows the overall rank stability
of the regulators across variant ANN networks generated.
(B) A higher resolution view of the top-ranked regulators for each
variant network. Only the top 50 regulators are shown, and the
color spectrum is now adjusted to only span 1–50. Any regulator
that was ranked within the top 50 regulators in a mutant network,
but was not in the top 50 in the parental K¼ 5 network, is displayed
as white.

Found at doi:10.1371/journal.pcbi.0020169.sg004 (45 KB PDF).

Accession Numbers

Table of top regulators. Gene descriptions for the top ten positively
and negatively associated regulators for each cluster as determined by
the ANN weights matrix in Figure 4 with annotations from http://
www.yeastgenome.org.
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